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ABSTRACT

We investigate, using a multi-fluid approach, the main properties of standing ion-acoustic modes driven by nonlinear standing Alfvén
waves. The standing character of the Alfvénic pump is because we study the superposition of two identical circularly polarised
counter-propagating waves. We consider parallel propagation along the constant magnetic field and we find that left and right-handed
modes generate via ponderomotive forces the second harmonic of standing ion-acoustic waves. We demonstrate that parametric
instabilities are not relevant in the present problem and the secondary ion-acoustic waves attenuate by Landau damping in the absence
of any other dissipative process. Kinetic effects are included in our model where ions are considered as particles and electrons as
a massless fluid, and hybrid simulations are used to complement the theoretical results. Analytical expressions are obtained for the
time evolution of the different physical variables in the absence of Landau damping. From the hybrid simulations we find that the
attenuation of the generated ion-acoustic waves follows the theoretical predictions even under the presence of a driver Alfvénic pump.
Due to the nonlinear induced ion-acoustic waves the system develops density cavities and an electric field parallel to the magnetic
field. Theoretical expressions for this density and electric field fluctuations are derived. The implications of these results in the context
of standing slow mode oscillations in coronal loops is discussed.

Key words. Magnetohydrodynamics (MHD) — waves — Sun: magnetic fields

1. Introduction

Alfvén waves are thought to play an important role in coronal
heating, solar wind acceleration and the development of turbu-
lence in solar wind plasmas. The reader is referred to the works
of Hasegawa & Uberoi (1982); Cross (1988); Cramer (2001) for
a broad introduction on the topic of Alfvén waves. Circularly po-
larised Alfvén waves are an exact solution to the MHD equations
even when the amplitude of the wave is large. The fluid approach
has been used in the past in the description of Alfvén waves
for reasons of mathematical tractability, however fluid theory
predicts a dramatic dependence of the occurrence of nonlinear
processes on the value of the plasma-β (e.g. Wong & Goldstein
1986). For this reason kinetic theory throughout the Vlasov
equation provides the most general description of a plasma (see
Spangler 1989, for applications to nonlinear Alfvén waves).

The analysis of Alfvén waves over the last decades has been
mostly focused on propagating waves because of their academic
interest and also because of their practical applications to both
laboratory and space plasmas. Hollweg (1971) showed that lin-
early polarised Alfvén waves propagating parallel to the mag-
netic field are able to drive density enhancements due to gradi-
ents in the wave magnetic-field pressure. Contrastingly, circu-

larly polarised low-frequency Alfvén wave propagating along a
constant magnetic field, are known to be parametrically unsta-
ble (e.g. Derby 1978; Goldstein 1978), a process that has re-
ceived significant attention in the scientific community. It can
be understood as a wave-wave interaction mechanism in which a
large-amplitude wave or pump couples nonlinearly with smaller-
amplitude fluctuations according to the laws of energy and mo-
mentum conservation. Three types of parametric instabilities are
found, modulational, beat and decay (e.g. Hollweg 1994). The
decay instability is of particular interest in the solar wind since it
might provide the backward propagating Alfvén waves that are
thought to be necessary for the development of magnetohydro-
dynamic turbulence. The analysis of these instabilities has been
mostly carried out in the single fluid approach and dispersive
effects arising from the cyclotron motion of single-ion species
have been also included in the analysis. Moreover, kinetic ef-
fects have been also considered in the problem of parametric in-
stability by Araneda (1998); Araneda et al. (2007, 2008). These
authors, using linear Vlasov theory and hybrid simulations found
that kinetic effects, such us Landau damping (LD hereafter),
break the degeneracy of the mode-coupling solutions of fluid
theory and are important even for very low proton plasma-β.
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On the contrary, standing Alfvén waves have received much
less attention in the literature. They can be formed at any place
where trapped or reflected Alfvén waves propagate in oppo-
site directions. They can be viewed as the superposition of two
identical counter-propagating waves. The most clear examples
of standing Alfvén waves are found in the magnetospheres of
planets such as the Earth, Jupiter and Mercury (see for exam-
ple Cummings et al. 1969; Manners et al. 2018; Khurana 1993).
Other examples are related to standing Alfvénic transverse loop
oscillations often reported in the solar atmosphere due to en-
ergy releases produced by flares (e.g. Nakariakov et al. 1999;
Schrijver et al. 2002; Aschwanden et al. 2002). A nearby per-
turbation is able to impact laterally coronal loops and excite
Alfvén like waves travelling along these closed magnetic flux
tubes. These waves are almost fully reflected back at the so-
lar photosphere where the density is several orders of magni-
tude larger than that in the solar corona (see the recent review
of Nakariakov et al. 2021). Laboratory plasmas is another exam-
ple where the presence of an initial Alfvénic pump can gener-
ate standing Alfvén waves. For example, Danielson et al. (2002)
studied the generation and damping of standing ion-acoustic
waves in Penning-Malmberg electron traps.

Using a single fluid approach Chian & Oliveira (1994,
1996); Oliveira & Chian (1996) studied the effects of para-
metric instabilities on standing waves with applications to the
magnetosphere. These authors developed a theory of magne-
tohydrodynamic (MHD) parametric instabilities driven by a
left-hand or right-hand circularly polarised standing Alfvén
wave in a low plasma-β under very specific initial conditions.
Israelevich & Ofman (2004, 2011) using both the MHD ap-
proach and hybrid simulations investigated numerically the gen-
eration of an electric field parallel to the magnetic field, due
to non-linear induced ion-acoustic waves produced by the pres-
ence of a standing Alfvénic pump. In a different context, Mottez
(2015) also explored the generation of a parallel electric field
using PIC (particle in cell) simulations when two counter-
propagating Alfvén waves are excited. However, the mecha-
nism proposed by this author is not related to the ponderomo-
tive force that it is usually operating under such conditions.
The ponderomotive force, see the review of Lundin & Guglielmi
(2006), generates density enhancements periodically in time and
space which are normally called cavities and depend on gra-
dients in density or electric fields. The periodicity depends on
the value of gas pressure of the system and the amplitude of
these enhancements is related quadratically with the amplitude
of the initial transverse excitation (see also Rankin et al. 1994;
Tikhonchuk et al. 1995). Interestingly, ponderomotive forces
can lead to separation of species, although this topic is not
addressed in the present work since the quasi-neutrality con-
dition is imposed for the plasma composed of kinetic pro-
tons and the treatment of electrons is that of a fluid. Recently,
Martínez-Gómez et al. (2018) using the multi-fluid approach
have modelled high-frequency waves in partially ionised plas-
mas akin to those in quiescent solar prominences. These authors
have shown that nonlinear Alfvén waves generate density and
pressure perturbations and that the friction due to collisions dis-
sipates a fraction of the wave energy, which is transformed into
heat raising the temperature of the plasma.

The main goal of the present paper is to understand, using
the multi-fluid approach and hybrid simulations, the generation
of ion-acoustic modes driven nonlinearly by standing finite am-
plitude transverse waves in 1D. We show both analytically and
numerically, that in our set-up there are no parametric instabili-
ties and that the ponderomotive force is the main responsible for

the dynamics of the system. Our analysis includes kinetic effects
and addresses the relevant question of how Landau damping of
ion-acoustic waves due to wave-particle interactions is affected
by the presence of the Alfvénic driver. We further propose some
simple applications of the results presented in this paper.

2. Basic plasma model configuration

We assume a quasi-neutral electron-proton plasma. The back-
ground magnetic field, B0, is constant and pointing in the
x−direction. The equations are solved in this direction only al-
though the velocity, electric and magnetic components in the y
and z directions are retained in the description, i.e., we concen-
trate on purely parallel wave propagation to the magnetic field.
We adopt the multi-fluid approach and use the standard massless
fluid-electron model. Nevertheless, protons and electrons are al-
lowed to have different temperatures (Tp and Te) and this leads
to the presence of LD in the system, especially in the situation
when Tp ≥ Te.

Our interest is on standing waves and therefore periodic
boundary conditions are applied at the edge of the spatial do-
main, where nodes in the three components of the velocity are
imposed at t = 0 and maintained during the time evolution.
This mimics the effect of line-tying. The domain is defined in
the range 0 ≤ x ≤ L where L is the size of the system.

3. Preliminaries: Ion-acoustic standing waves

We start describing the results for standing ion-acoustic waves
that are eigenmodes of the configuration and not forced oscil-
lations due to a driver. Since the longitudinal magnetic field is
assumed constant, with zero transverse magnetic fluctuations, it
plays a passive role in this section. The results are well known for
propagating waves but for standing waves there are some points
that need to be explained in detail, being the most relevant that a
standing ion-acoustic wave is attenuated by Landau damping.

In the multi-fluid approach each species, denoted by the
subindex, s, satisfy the continuity equation and the momentum
equation,

∂ns

∂t
+
∂(nsuxs)

∂x
= 0, (1)

∂us

∂t
+ uxs

∂us

∂x
=

qs

ms

(

E +
us × B

c

)

− 1

msns

∂ps

∂x
êx, (2)

where collisions are neglected and the variables have their usual
meaning. The mass density of each species is defined as ρs =

msns. In the present case we consider protons and electrons only,
but we assume that electrons are massless. This simplifies the
problem allowing us a direct comparison with the hybrid numer-
ical simulations described later. The previous equations are com-
pleted with Maxwell equations and the closure of the system of
equation in fluids is often done with the adiabatic gas law. These
equations lead to the MHD equations when the single fluid ap-
proximation is used.

For a constant horizontal magnetic field the linearised lon-
gitudinal momentum equation reduces for the parallel velocity
component to the following equation

ms

∂δuxs

∂t
= qsδEx −

1

n0s

∂δps

∂x
. (3)

where δuxs, δEx and δps represent the parallel velocity, parallel
electric field, and the pressure fluctuations respectively, while n0s
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is the equilibrium density. We eliminate the longitudinal compo-
nent of the parallel electric field by assuming massless electrons,
therefore the previous equation when applied to electrons simpli-
fies to (qe = −e)

δEx = −
1

en0

∂δpe

∂x
, (4)

where we have neglected the term on the left hand side of Eq. (3).
Imposing quasi-neutrality means that n0p = n0e ≡ n0, and for the
same reason the proton and electron density fluctuations must be
the same, i.e., δnp = δne ≡ δn. Equation (4) is then introduced
in Eq. (3) for protons. Using the standard adiabatic law for the
perturbations we have

δps

p0s

= γs

δns

n0s

. (5)

These equations are complemented with the continuity equation
which implies that δuxp = δuxe and therefore hereafter we refer
to this variable as δux.

The resulting system of equations is

∂δux

∂t
= −

(

c2
sp + c2

se

) 1

n0

∂δn

∂x
, (6)

∂δn

∂t
= −n0

∂δux

∂x
. (7)

Where we have used the definition of the sound speeds, c2
se =

γe
kB

mp
Te and c2

sp = γp
kB

mp
Tp, being γe and γp the corresponding

values of the polytropic index for electrons and protons and Te

and Tp are the equilibrium temperatures of the two species.
We rewrite Eq. (6) as a single equation for δux,

∂2δux

∂t2
− C2

s

∂2δux

∂x2
= 0. (8)

where we have introduced C2
s = c2

se + c2
sp. This equation is solved

applying initial and boundary conditions. Since we are interested
on standing waves in a finite domain these conditions are

δux(x, t = 0) = f (x), (9)

∂δux

∂t
(x, t = 0) = 0, (10)

δux(0, t) = δux(L, t) = 0, (11)

where f (x) is the spatial profile of the initial perturbation. The
solution to the wave equation together with the previous initial
and boundary conditions is known to be

δux(x, t) =
∞
∑

m=1

cm cos
(

Cs

mπ

L
t

)

sin
(

mπ

L
x

)

, (12)

where the cm are the Fourier coefficients given by

cm =
2

L

∫ L

0
f (x) sin

(

mπ

L
x

)

dx, m = 1, 2, . . . (13)

Equation (12) satisfies the expected boundary conditions (nodes)
at x = 0 and x = L in velocity. It represents a standing solution
and can be viewed as the superposition of two counterpropa-
gating waves. The standing solution has zero propagation speed
since the two counterpropagating waves have the same phase ve-
locity but of opposite sign.

The dispersion relation that we obtain is simply

ω = k Cs, (14)

which corresponds to ion-acoustic waves and

k =
mπ

L
, m = 1, 2, . . . (15)

is the discrete wavevector that matches the boundary conditions.
For the density perturbation we also obtain an homogeneous

wave equation whose solution is calculated using Eq. (12) and
Eq. (7),

δn(x, t) = −
n0

Cs

∞
∑

m=1

cm sin
(

Cs
mπ

L
t

)

cos
(

mπ

L
x

)

. (16)

Hence, density perturbations are 90◦ out of phase in time and
space with respect to velocity. The density fluctuation, contrary
to the parallel velocity, has antinodes at x = 0 and x = L. These
results, although simple, are useful to understand the situation
when the Alfvénic driver is present.

The expression for the electric field is obtained from Eq. (4)
using Eq. (16) and reads

δEx(x, t) = −B0

c

1

ωcp

c2
se

Cs

∞
∑

m=1

(

mπ

L

)

cm sin
(

Cs
mπ

L
t

)

sin
(

mπ

L
x

)

. (17)

where the equilibrium magnetic field, B0, and ωcp (the cyclotron
frequency for protons) appear for normalisation purposes only.

3.1. Kinetic effects on ion-acoustic standing waves

The aim of this section is to introduce kinetic effects by im-
plementing a relatively simple method of Araneda (1998);
Araneda et al. (2007) to incorporate Landau damping in the
multi-fluid system of equations, previously described. The pro-
cedure considers the closure between pressure and density mo-
ments relationship by a fully kinetic treatment of the ion-acoustic
wave dispersion analysis via the Vlasov equation, instead of us-
ing the traditional polytropic closure of the fluid equations. This
avoids the inadequacies of fluid models in describing the reso-
nant wave-particle interaction effects and the main result is that
it leads to a polytropic index γ that is complex. The reader is
referred to Appendix A for the details about the procedure to
include the kinetic effects in the standing problem. The most im-
portant conclusion of this analysis is that for the standing sit-
uation, the complex polytropic index γ is exactly the same as
in the single propagating case. This means that a standing wave
will show exactly the same attenuation due to LD as the equiv-
alent single propagating wave, at least when there is no initial
Alfvénic pump in the system. In fact, as we will demonstrate
later, the presence of the pump driver does not change the atten-
uation by Landau damping of the ion-acoustic wave either.

Therefore, as shown by Araneda (1998) for the propagating
case, to include the kinetic effects in the standing problem we
just need to use the derived dispersion relation of the multi-fluid
case and change γ of protons by Eq. (A.16) to obtain a new dis-
persion relation where ω is complex and takes into account the
attenuation by LD. Hence,

ω2 = k2
(

c2
se + c2

sp

)

= k2

[

γe
kB

mp
Te + 2

(

ξ2
s −

1

Z′(ξ)

)

kB

mp
Tp

]

. (18)

where ξ = ω
k w0p

, w0p =
√

2κBTp/mp is the thermal velocity of

protons and for simplicity we assume that the parallel drift is
zero. It is convenient to define cse = vA

√

γe βe/2 and we have
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that Tp/Te = βp/βe. From Eq. (18) is not difficult to write an ex-
plicit form for the dispersion relation in terms of the Z function,

Z′(ξ) =
2 βp

γe βe
. (19)

This is exactly the same dispersion relation that is obtained
by purely kinematic calculations for parallel propagating ion-
acoustic waves based on the Vlasov method (e.g. Swanson
2003). It is known that this dispersion relation has an approxi-
mate solution when the expansion for large arguments of the Z
function is used. Under this approximation the real and imagi-
nary parts of the frequency read

ωR = k cse

√

1 + 3
βp

γe βe
, (20)

ωI = −k cse

√

π γe βe

2 βp
ξ2

R e−ξ
2
R , (21)

where ξR =
ωR

k w0p
. This dimensionless parameter is found to be

independent of the wavenumber and the sound speed using the
approximation for ωR given by Eq. (20). Interestingly, the damp-
ing per period defined as τD/P = ωR/(2π|ωI|) is also independent
of k and cse using the previous analytic approximations and the
dependence is only on the ratio βp/βe. It is worth mentioning that
LD, apart from producing the attenuation of the oscillation, has
a clear effect on the real part of the frequency of oscillation, see
Eq. (20), and this change in the period of oscillation might be
easier to study in the time-dependent simulations rather than the
damping time which is more difficult to estimate based on the at-
tenuation of the amplitudes with time. The implications of these
results in the context of coronal loop oscillations are discussed
in Sect. 6.

3.2. Hybrid simulations results

We have performed hybrid simulations with the aim of un-
derstanding and corroborating the previous analytical results,
especially regarding kinetic effects, and as a preparation for
the driven case investigated latter. The hybrid code we use
is one-dimensional in space but retains all three-components
of the electromagnetic field, currents and particle velocities
(Winske & Leroy 1985; Terasawa et al. 1986; Horowitz et al.
1989; Winske & Omidi 1996). The electrons are considered as
a massless and isothermal fluid, whereas ions are treated kineti-
cally as discrete particles-in-cell (PIC) representing a collision-
less plasma with a finite generally anisotropic temperatures, and
drifting parallel to the mean magnetic field. The advantage of
using this hybrid method is that allows us to resolve the ion dy-
namics and to integrate the equations over many ion-cyclotron
periods, while neglecting the small temporal and spatial scales of
the electron kinetic motions. The particle equations are advanced
in time with a leapfrog method, and the fluid moments are com-
puted with a second-order weighting scheme. The electric and
magnetic fields are advanced in time solving the fields via a func-
tional iterative explicit scheme as described by Horowitz et al.
(1989) and the derivatives in the gradient, curl and divergence
terms are estimated using a fourth-order finite difference scheme.
A simple isothermal equation for electrons (γe = 1) is used.
The code, modified from its original Fourier pseudo-spectral ver-
sion by A. F.-Viñas, has been tested and compared with simi-
lar numerical codes in several publications (e.g. Araneda et al.

2002; Xie et al. 2004; Araneda et al. 2007; Moya et al. 2012;
Maneva et al. 2013).

Fig. 1. Top panel, macroscopic variables calculated from the hybrid
simulations at t = 5τA. Wave used βe = 6× 10−2 and βp = 10−2. Bottom
panel, same as the previous panel but at a later stage, t = 36.25τA .
A standing ion-acoustic mode is excited in system. In this simula-
tions L = 20di (di is the ion-inertial length) and k = 2 × 2π/L. The
magnetic field is normalised as B = Bunits/B0, the electric field as
E = cEunits/vAB0 where c is the speed of light and vA the equilibrium
Alfvén speed. Density is normalised to the equilibrium density. For vi-
sualisation purposes a smoothing of the macroscopic variables has been
applied over 10 grid cells. The temporal evolution is available as an
online movie.

Article number, page 4 of 20



Jaume Terradas, Adolfo F.- Viñas, Jaime A. Araneda: Nonlinear excitation of standing ion-acoustic waves

We use periodic boundary conditions in the system which
mimic the effect of line-tying at the edges of the domain. We
impose a sinusoidal initial perturbation in the parallel macro-
scopic velocity (i.e., a perturbation in δux) that excites a har-
monic (k = 2 × 2π/L) of the ion-acoustic wave which satisfies
the periodic conditions. Hence, we are exciting a single mode in
the system which allows a comparison with the previous analyt-
ical results. Moreover, the chosen initial mode is precisely the
mode that will be excited nonlinearly in the driven case studied
in Sect. 4. The macroscopic fluid velocity of the initial pertur-
bation (u) is imposed self-consistently with the initial velocities
of the individual particles (v) taking into account the shape of
the macro-particles. Since we want to excite a standing mode no
density fluctuations are required to be introduced in the system at
t = 0 since density is phase-shifted with respect velocity in time
by 90◦ in the standing wave, as we have shown previously. This
means that the initial position of the particles does not need to
be imposed to obtain a certain initial density profile that excites
an ion-acoustic wave. As usual low amplitude random veloci-
ties are introduced in the system. We typically use 256 grid cells
with 1000 particles per cell. The time step is ∆t = 0.0025ω−1

cp .
Lengths are normalised to the ion-inertial length, di = vA/ωcp

and velocity to the equilibrium Alfvén speed, vA. We typically
use a numerical box length of L = 20di although this parame-
ter is not important regarding the damping per period of the ion-
acoustic waves. We use that the ratio of the ion plasma frequency
to the proton cyclotron frequency is ωpi/ωcp = 104.

The time evolution of different macroscopic variables are
shown in Fig. 1 for a typical run. At the beginning of the sim-
ulation (top panel) the x−component of the current shows some
coherent spatial structure while the density fluctuation also dis-
plays a large scale associated to the mode number that has ini-
tially been excited in the system (m = 4 in our case). Note that,
as expected, Jx (essentially ux) has nodes at the boundaries of
the domain while the density has antinodes. The magnetic field
does not show a significant amplitude since the noise is low and
the same applies to the electric field components except for δEx.
As time evolves (bottom panel) the oscillatory character of the
variables becomes visible and the standing character of the wave
is clear. In these simulations we have found a good agreement
with the analytical expressions given previously. In particular
we have checked that the overall structure of the parallel ve-
locity and density is in agreement with the Eqs. (12) and (16).
Although the electric field seems quite noisy in Fig. 1, the lon-
gitudinal component behaves also as predicted by Eq. (17). For
a better comparison of the simulations and the multi-fluid solu-
tions for the standing case we have focused on a situation with
very small Landau damping by choosing a small value of βp in
comparison with βe.

Next we have considered a situation with strong LD. The re-
sults of the simulations indicate that the amplitude of the excited
ion-acoustic is attenuated with time. We have inferred the corre-
sponding period and damping time from the simulations. To do
so we have performed a Fourier analysis in space and have fo-
cused on the dominant mode which is precisely m = 4 because
of the initial excitation. When Fourier analysis is performed the
common definition of the wavenumbers is k = 2π/L m′, and the
mode m = 4 using Eq. (15) corresponds to the mode m′ = 2. An
example of the temporal evolution associated to this dominant
wavenumber is found in Fig. 2 top panel. The damping of the sig-
nal is quite clear in this plot, and the expected attenuation due to
Landau damping, by solving Eq. (19), has been also plotted with
a dashed envelope for comparison purposes. The results from the
dispersion relation are P = 44.6τA and τD = −127.2τA. From the

Fig. 2. Top panel, absolute value of the coefficient of the Fourier veloc-
ity (macroscopic ux) inferred from the hybrid simulations correspond-
ing to the excited wavelength in the system (m = 4 or equivalently
m′ = 2). The dashed line represents the expected damping from the
theoretical calculations based on the solution of the dispersion relation
given by Eq. (19). We have used βe = 6 × 10−2 and βp = 10−2. Bottom
panel, same as the previous panel but in this case βp = 2 × 10−2, and
therefore the attenuation is stronger.

simulations we have performed a periodogram (Scargle 1982),
providing a better frequency accuracy than the common Fourier
power spectrum, to calculate the real part of the frequency. An
exponential fit to the envelope of the signal has used to estimate
the imaginary part of the frequency. The obtained values from
the simulations are P = 45.2τA and τD = −124.0τA. The agree-
ment between the hybrid simulations and the theoretical result
is rather good. Another example is shown in the bottom panel
of Fig. 2. For the chosen parameters, with twice the plasma beta
for protons, the attenuation is faster than in the previous case
and the fit to the exponential decay is slightly worse. The results
from the dispersion relation are P = 38.1τA and τD = −38.7τA,
while the inferred values from the simulations are P = 36.9τA

and τD = −42.9τA. For large times the amplitude of the signal
starts to be dominated by noise.

It is important to mention that the amplitude of the initial
wave can have some influence on the attenuation of the signal.
Since Landau theory is based on linear results, there might be
some effects that are beyond the theoretical predictions. For this
reason, we have decided to investigate the dependence of the at-
tenuation with the amplitude of the initial wave using the hybrid
simulations. The results are shown in Fig. 3 for two particular
choice of values of (βe, βp). The variation of the real part of the
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Fig. 3. Real and imaginary parts of ω for a standing ion-acoustic wave
derived from hybrid simulations (circles) as a function of the amplitude
of the initial excitation. In this example, for the top curve, βe = 6 ×
10−2 and βp = 10−2, while for the bottom curve, βe = 10−1 and βp =

1.25 × 10−2. The attenuation is calculated from the Fourier analysis in
space and the power of the mode m = 4. The horizontal dashed lines
corresponds to the expected damping per period of the corresponding
non-driven ion-acoustic mode attenuated by LD and calculated from
Eq. (19).

frequency with the amplitude is quite small (top panel). While
for the imaginary part, the plot indicates that there is a sort of
plateau where the inferred values tend to the theoretical calcula-
tions (plotted with horizontal dashed lines). Nevertheless, from
Fig. 3 we realise that if the initial amplitude is too small or too
large the deviations from the expected value can be significant.
This is especially relevant for large values of the initial ampli-
tude and the reason behind the faster attenuation is that the ex-
cited ion-acoustic wave starts developing shocks. These shocks
produce the excitation of higher spatial harmonics and therefore
some energy is deposited into these modes, meaning that the en-
ergy of the initial m = 4 mode decreases. Since the numeri-
cal code we are using does not contain proper shock-capturing
techniques or explicit dissipation this issue is not investigated
further and we concentrate on the lineal regime. On the other
limit, for very small amplitudes, we have to remember that the
system contains random noise that in this case it is able to al-
ter the efficiency of the LD process. We think that the results
shown here are not related to the nonlinear effects on the res-
onance itself. O’Neil (1965) showed that the damping can be
significantly reduced because of the nonlinear energy exchange
between a wave and the resonant particles trapped in its poten-
tial wells. As the phase mixing of resonant particles becomes
more complex, the less energy interchange occurs. In reality it is
known that the wave amplitude eventually saturates at a nonzero
value which depends on the amplitude of the initial perturbation
(e.g. Lancellotti & Dorning 1998, 2009).

With the knowledge of the most convenient amplitude (typi-
cally around 0.01vA) to be in the proper attenuation regime dom-

Fig. 4. Real and imaginary parts of ω for a standing ion-acoustic wave
derived from hybrid simulations (circles) as a function of the plasma-β
for electrons. The continuous line corresponds to the numerical solution
to the dispersion relation given by Eq. (19) while the dashed line cor-
responds to the analytical approximation given by Eqs. (20) and (21).
In this plot βp = 10−1, L = 20di (di is the ion-inertial length) and
k = 2 × 2π/L.

inated by linear Landau damping we have constructed Fig. 4 by
changing βe and keeping the rest of the parameters constant. We
have represented again the real and imaginary part of omega to-
gether with the numerical solution of the dispersion relation and
the analytical approximations. We find that the results inferred
from the simulations agree quite well with the numerical solu-
tion for both the real and imaginary parts of ω. The analytical
approximation is quite good for the real part of omega while the
imaginary part is less accurate (this is common in this kind of
approximation, see for example, Swanson 2003). The estimation
of the damping time is more difficult from the simulations, es-
pecially when the attenuation is fast, but the fact that the real
part agrees well with the theoretical prediction is already a clear
indication that ion-acoustic waves loses their energy due to LD.

Further evidences of the presence of Landau damping are
found by calculating the velocity distribution function (VDF)
from the hybrid simulations. In Fig. 5 we find the VDF as a func-
tion of the parallel velocity of the particles, vx, and one of the
transverse particle velocity components, vy, integrated over the
spatial simulation box along the x−direction. Similar results are
obtained for the vx–vz velocity components. The initially circular
profile at t = 0 (not shown in the plot) starts to develop two sym-
metrical beams along vx, since the standing wave can be viewed
as the superposition of two identical counter-propagating waves.
As time advances the beams are enhanced since more energy is
deposited around the two symmetric resonance positions due to
the wave-particle interaction. For a propagating wave we would
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Fig. 5. Velocity distribution function as a function of vx and vy averaged
over x and calculated from the 1D hybrid simulations at two different
times of the evolution. Top panel corresponds to the initial development
of the beams due to LD. Bottom panel shows a later development of the
beams. We have used a logarithmic scale to represent the distribution
function for a better visualisation of the results. In this plot we have
used βe = 6 × 10−2 and βp = 10−3 and corresponds to weak LD.

only find a single beam instead of two, similar to the results ob-
tained by Araneda et al. (2007).

The conclusion of this section is that standing ion-acoustic
waves are eigenmodes of our finite length system and that these
waves, similarly to the propagating case, attenuate by LD. In the
linear regime the attenuation times and frequencies are exactly
the same as those obtained for propagating waves and we can use
the analytical approximations known for that situation. The fact
that the standing wave is a combination of two counterpropa-
gating waves does not change the efficiency of the wave-particle
interaction process.

4. Ion acoustic waves driven by Alfvén waves

The goal here is to investigate the generation of ion-acoustic
waves driven nonlinearly due to the presence of a standing
Alfvénic pump. The previous section, based on the calculation

of the non-forced ion-acoustic eigenmodes, turns out to be use-
ful to understand the present driven case.

Since the Alfvénic standing pump can be viewed as the
superposition of two circularly polarised counter-propagating
waves, the first question that needs to be addressed is whether
parametric instabilities are present in the system. For this reason
we think that it is convenient to briefly reexamine the mathemat-
ical analysis that leads to the physical description of parametric
instability for a circularly polarised propagating Alfvén wave.
The idea is to use a perturbational approach and derive the equa-
tions at different orders in a dimensionless parameter. In this case
(see Derby 1978; Goldstein 1978) the correct ordering in the per-
turbation scheme in the ideal MHD equations is (the parameter
is ǫ and it is assumed to be much smaller than 1)

u = u⊥ + ǫ u′⊥ + ǫ δux êx,

B = B0 êx + B⊥ + ǫ B′⊥,

ρ = ρ0 + ǫ δρ,

p = p0 + ǫ δp. (22)

We start with zero order in ǫ. We obtain from the perpendicular
component of the momentum equation that

ρ0
∂u⊥

∂t
=

B0

µ0

∂B⊥

∂x
, (23)

while from the induction equation to zero order in ǫ we find

∂B⊥

∂t
= B0

∂u⊥

∂x
. (24)

Combining Eqs. (23) and (24) we obtain the standard wave equa-
tion that describes Alfvén waves. It is not difficult to see that if
the propagating Alfvén wave is circularly polarised (the situa-
tion considered here) then B⊥ = const, i.e., the amplitude of the
wave is independent of time and position (see Appendix C), and
this has important consequences as we show in the following.

The parallel component of the momentum equation leads to
zero order,

0 = −∂p0

∂x
− 1

2µ0

∂B2
⊥

∂x
, (25)

which is a basic equation that is not clearly described in the lit-
erature of parametric instabilities, Since B⊥ = const this means
that the second term in the previous equation, i.e., the pondero-
motive term, is zero and therefore p0 must be constant as well
and the equation is fulfilled. However, and this is the fundamen-
tal point of the present paper, for a standing circularly polarised
wave the ponderomotive force of the pump is not zero and a dif-
ferent approach regarding the perturbation scheme needs to be
used. But for the moment we still provide the equations to first
order in ǫ for the propagating circularly polarised wave. From
the continuity equation we find

∂δρ

∂t
+ ρ0

∂δux

∂x
= 0. (26)

The perpendicular component of the momentum equation gives

ρ0
∂u′⊥
∂t
+ δρ

∂u⊥

∂t
+ ρ0δux

∂u⊥

∂x
=

B0

µ0

∂B′⊥
∂x

, (27)

while for the parallel component

ρ0
∂δux

∂t
= −

∂δp

∂x
−

1

µ0

∂(B⊥ · B′⊥)

∂x
. (28)
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It is important to realise that on the right hand side of this equa-
tion we find the coupling between the pump, B⊥, and the induced
magnetic perturbations, B′⊥. From the energy equation we obtain

∂δp

∂t
= −γp0

∂δux

∂x
, (29)

which is usually substituted in Eq. (28) to eliminate the variable
δp. The magnetic field perturbation to first order in ǫ is

∂B′⊥
∂t
= B0

∂u′⊥
∂x
−
∂(δuxB⊥)

∂x
, (30)

where we see that there is a coupling with the longitudi-
nal motions. These first order equations in ǫ are exactly the
same as those derived by Derby (1978); Goldstein (1978) al-
though this last author rewrites the equations as a second order
derivative in time and space. The same equations are found in
Wong & Goldstein (1986) and Jayanti & Hollweg (1993) when
dispersion effects, introduced by the finite ion cyclotron, are re-
moved. These last authors, as in Derby (1978), prefer to write
the equations in terms of B± = By ± iBz, which is useful when
working with circularly polarised waves (the positive sign corre-
sponds to left handed waves and the negative sign to right handed
waves). It is well established that the previous equations lead to
parametric instabilities, see the references in this paragraph.

If instead of a circularly polarised propagating wave we con-
sider a standing circularly polarised wave, i.e., the main topic of
the present work, we have that B⊥ , const (see Appendix C).
This means that the perturbation expansion can not be applied
essentially because the ponderomotive force due to the pump is
not zero now. The previous perturbation scheme fails precisely
in Eq. (25) since the second term of the right hand side is dif-
ferent from zero. Hence, we have to perform a different analysis
to properly include the effect of the ponderomotive force in the
equations, missing in the circularly polarised propagating case.
It turns out that the appropriate expansion when B⊥ , const is
the following (e.g. Rankin et al. 1994; Tikhonchuk et al. 1995;
Ballester et al. 2020),

u = ǫ u⊥ + ǫ
2 δux êx + ǫ

3 u′⊥,

B = B0 êx + ǫ B⊥ + ǫ
3 B′⊥,

ρ = ρ0 + ǫ
2 δρ,

p = p0 + ǫ
2 δp. (31)

This expansion scheme is different from the situation for the cir-
cularly propagating case given by Eq. (22). It is therefore logical
to find a distinct physical behaviour in the two situations. In par-
ticular we realise that using the previous expansion the second
order density, pressure and the parallel velocity perturbations do
not have the same order as the induced perpendicular velocity
and magnetic field fluctuations which are third order.

We use the same procedure and collect terms of the same
order in ǫ. From the perpendicular component of the momentum
equation we obtain to first order

ρ0
∂u⊥

∂t
=

B0

µ0

∂B⊥

∂x
. (32)

while the induction equation to first order in ǫ we find

∂B⊥

∂t
= B0

∂u⊥

∂x
. (33)

Combining Eqs. (32) and (33) we obtain again the standard wave
equation that describes Alfvén waves. This is exactly the same

result as in the previous propagating case, but now it is found to
be to first order in ǫ. Let us provide the equations to second order
in ǫ, from the continuity equation we find

∂δρ

∂t
+ ρ0

∂δux

∂x
= 0. (34)

From the parallel component of the momentum equation we ob-
tain, to second order in ǫ that

ρ0
∂δux

∂t
= −∂δp

∂x
− 1

2µ0

∂B2
⊥

∂x
. (35)

This equation was first derived in Hollweg (1971) (see his
Eq. (11)) where a definite connection between linearly polarised
Alfvén waves and density fluctuations was established. It is im-
portant to realise that on the right hand side of this equation we
encounter the effect of the ponderomotive force and this equation
is different from that obtained in the circularly polarised propa-
gating case to first order, see second term on the right hand side
of Eq. (28). This is the reason that leads to different physical pro-
cesses, namely a ponderomotive driven system in one case and
to a parametrical unstable configuration in the other.

Interestingly, if we continue the analysis, to third order we
obtain,

ρ0
∂u′⊥
∂t
+ δρ

∂u⊥

∂t
+ ρ0δux

∂u⊥

∂x
=

B0

µ0

∂B′⊥
∂x

, (36)

while for the magnetic field perturbation to third order in ǫ we
have

∂B′⊥
∂t
= B0

∂u′⊥
∂x
−
∂(δuxB⊥)

∂x
. (37)

These last two equations are exactly the same as in the circularly
polarised propagating case, compare with Eqs. (27) and (30). But
in the present scheme they are third order in ǫ, while the longi-
tudinal velocity component is second order. This is different to
the purely parametric unstable situation where density fluctua-
tions and the induced velocity and magnetic field perturbations
are of the same order in ǫ. Nevertheless, Eqs. (36) and (37) can
still be viewed as the mathematical representation of a potential
parametric process but to third order. Higher order terms can also
play a role in regarding parametric instabilities. Thus, the main
conclusion here is that for the standing wave problem paramet-
ric instabilities are not as primary as in the propagating case,
and ponderomotive effects are prevailing. Therefore, we need to
focus on the the effect of the ponderomotive force, and for this
reason we extend the previous results, using the perturbational
approach given in Eq. (31) by using the multi-fluid equations
that provide a more general description of a plasma (we assume
again that electrons are massless). The electric field, present in
the multi-fluid description, is assumed to have a similar expan-
sion as the fluid velocity.

4.1. First order linearisation

Collecting terms to first order in ǫ in the perturbational scheme
we find the known equations that describe the circularly Alfvénic
pump. Since we concentrate on standing waves instead of prop-
agating waves we assume the following dependence (see Ap-
pendix C)

u⊥ = iu⊥0 e−iω0t sin k0x, (38)

B⊥ = B⊥0 e−iω0t cos k0x. (39)
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Let us briefly describe the features of this wave and how we
obtain the dispersion relation and the polarisation relations in
the multi-fluid case. The value of the wavenumber k0 is discrete
now.

Using Faraday’s law the electric field can be written in terms
of the magnetic field as

E⊥ =
ω0

ck0
B⊥0 e−iω0t sin k0 x. (40)

The vectorial product between the velocity and the background
is simply −iB0u⊥. To first order in ǫ we find

−iω0u⊥0 =
qs

ms

(

ω0

ck0
B⊥0 +

B0

c
δu⊥0

)

. (41)

If we introduce the cyclotron frequency ωc = qsB0/msc (for
protons qs = e and ms = mp while for electrons qs = −e and
ms = me) the previous equation is written as

(ωc − ω0) u⊥0 = −ωc
ω0

k0

B⊥0

B0
. (42)

It is important to note that this equation is valid for both pro-
tons and electrons and they have different velocity amplitudes in
the perpendicular direction during the periodic oscillation. In the
case of electrons (assuming that |ωce| ≫ ω0) the relation reduces
to

u⊥0e = −
ω0

k0

B⊥0

B0
. (43)

To derive a dispersion relation we have to use Ampere’s law
which reads

j⊥ = −i
c

4π
k0B⊥0 e−iω0t sin k0x, (44)

where we need the total perturbed current due to protons and
electrons which is

j⊥ = en0pu⊥p − en0eu⊥e. (45)

Due to charge neutrality the density of protons and electrons
must be the same, i.e., n0p = n0e. Eliminating the velocities if
favour of the magnetic field perturbation we have

j⊥ = −en0
B⊥

k0B0

ω2
0

ωcp − ω0
. (46)

Substituting this expression in Eq. (44) we obtain the dispersion
relation for standing waves which is exactly the same as that for
propagating circularly polarised waves,

1 − ω0

ωcp
=
ω2

0

ω2
cp

ω2
cp

k2
0v2

Ap

. (47)

where v2
Ap = B2

0/(4πn0pmp). Defining X0 = ω0/ωcp, Y0 =

k0vAp/ωcp the previous equations reduce to the standard form
(e.g. Gomberoff& Elgueta 1991; Cramer 2001)

Y2
0 =

X2
0

1 − X0
. (48)

For ω0 > 0 this equation describes left handed polarised Alfvén
waves propagating in the positive direction (if k0 > 0) or in the
negative direction (if k0 < 0) along the magnetic field, both with
the same frequency.

Fig. 6. Dispersion relation for circularly polarised Alfvén waves cal-
culated using Eqs. (48) and (49). The right-handed mode or R−mode
has a frequency that is unbounded with the wavenumber k. The left-
handed mode or L−mode in the massless electron model considered
here has a frequency that tends asymptotically for large k to the ion-
cyclotron frequency, ωcp. The dashed line represents the results of the
single fluid model and in this case the Alfvén wave has a frequency
given by ω = kvA. In the limit of very small numbers the wave frequen-
cies of the single and multi-fluid descriptions coincide.

For right handed waves we need to change ω0 by −ω0 and
the dispersion relation is

Y2
0 =

X2
0

1 + X0
, (49)

and again the same frequency is obtained for forward or back-
ward waves since the dispersion relation is quadratic in k0.
Hence, we have obtained a dispersion relation to first order for
standing circularly polarised Alfvén waves which is exactly the
same as for circularly polarised Alfvén propagating parallel to
the magnetic field. The properties of the dispersion relation for
L and R−modes are shown in Fig. 6.

To finish this section it is interesting to realise that the polar-
isation relation given by Eq. (42) can be further simplified using
the dispersion relation given by Eq. (47). We finally get that

u⊥p = −
v2

A

ω0/k0

B⊥

B0
. (50)

for protons, while for electrons

u⊥e = −
ω0

k0

B⊥

B0
. (51)

Equations (50) and (51) are valid for both right and left-handed
circularly polarised modes but ω0 changes for R and L−modes.

Note that protons and electrons have the same velocity in
MHD, i.e., when ω0 = ±k0vA, and in this case

u⊥ = −vA
B⊥

B0
. (52)

for k0 > 0 and

u⊥ = vA
B⊥

B0
. (53)

for k0 < 0.
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4.2. Second order linearisation

To second order in ǫ we expect to obtain the dynamics of the
wave due to ponderomotive effects. Using the standing Alfvénic
pump to first order, described in the previous section, we have
that for the parallel velocity component (same for protons and
electrons) and to second order in ǫ

ms

∂δux

∂t
= qs

(

δEx +
1

c
(us × B)2x

)

−
1

n0s

∂δps

∂x
, (54)

where to second order,

(us × B)2x =
1

2i

(

−u⊥sB∗⊥ + u∗⊥sB⊥
)

, (55)

and protons and electrons have different perpendicular velocity
amplitudes in the circularly polarised pump (see previous section
for the relationship between u⊥s and B⊥).

As usual we eliminate the longitudinal component of the
parallel electric field by assuming massless electrons, therefore
from Eq. (54) applied to electrons and neglecting the term on the
left hand side, we obtain

δEx = −
1

c
(ue × B)2x −

1

en0

∂δpe

∂x
. (56)

This expression is then introduced in Eq. (54) but applied to pro-
tons.

Due to quasi-neutrality n0p = n0e = n0 meaning also that
δnp = δne. Using the standard adiabatic law for the perturbations
we have

δps

p0s

= γ
δns

n0s

. (57)

We use this equation to eliminate the pressure perturbation and
to work with the density perturbation.

The resulting system of equations using mass continuity re-
duces to

∂δux

∂t
=

e

mp

1

c

(

(up × B)2x − (ue × B)2x

)

−
(

c2
se + c2

sp

) 1

n0

∂δn

∂x
,

(58)

∂δn

∂t
= −n0

∂δux

∂x
. (59)

Where we have used the definition of the sound speed, Cs.
We rewrite Eq. (58) as a single equation for δux,

∂2δux

∂t2
−

(

c2
se + c2

sp

) ∂2δux

∂x2
=

e

mp

1

c

∂

∂t

(

(up × B)2x − (ue × B)2x

)

.

(60)

We see that we obtain a wave equation with a forcing term on
the right hand side due to the Alfvénic pump.

For the density we find the following equation

∂2δn

∂t2
−

(

c2
se + c2

sp

) ∂2δn

∂x2
= − n0

mp

e

c

∂

∂x

(

(up × B)2x − (ue × B)2x

)

.

(61)

The term on the right hand size involves now the spatial deriva-
tive of the forcing term instead of the time derivative that ap-
pears in the equation for the density fluctuation. Let us evaluate

this forcing term. Using Eq. (38) for the standing pump it is not
difficult to find that

e

mp

1

c

(

(up × B)2x − (ue × B)2x

)

=

e

mp

1

c

(

u⊥0e − u⊥0p

)

B⊥0 sin k0x cos k0x =

ωcp

k0

ω2
0

ωcp − ω0

B2
⊥0

B2
0

1

2
sin 2k0x = A f (x), (62)

where we have written the velocity amplitudes for electrons and
protons due to the pump wave in terms of the magnetic field per-
turbation. We rewrite the previous expression as a constant, A,
times a function, f (x). The forcing term is proportional to the
square of the amplitude of the pump, as expected for a second
order expansion. However note that there is no temporal depen-
dence. This means that the right hand-side of Eq. (60) is zero
and the parallel motions seem to be uncoupled from the pump.
Nevertheless, the forcing term is not zero for the density per-
turbation, and for this reason we concentrate on this magnitude.
We aim at solving Eq. (61) for the forcing term given by Eq. (62)
together with the following initial and boundary conditions

δn(x, t = 0) =
∂δn

∂t
(x, t = 0) = 0, (63)

∂δn

∂x
(0, t) =

∂δn

∂x
(L, t) = 0. (64)

It is known that the formal solution of this problem, is the fol-
lowing

δn(x, t) =
∞
∑

m=1

[

L

Cs m π

∫ t

0
fm sin

(

Cs m π

L
(t − τ)

)

dτ

]

cos
(

mπ

L
x

)

,

(65)

where

fm =
2

L

∫ L

0
g(x) cos

(

mπ

L
x

)

dx, m = 1, 2, . . . (66)

and now we have that

g(x) = −n0 A
∂ f (x)

∂x
, (67)

and we have used that Cs =

√

c2
se + c2

sp. Substituting f (x) into

Eq. (67) and evaluating the integral in Eq. (66) we find, due to
symmetry reasons, that all the values are zero except m = 4 (or
m′ = 2) obtaining that

f4 = −n0 ωcp

ω2
0

ωcp − ω0

B2
⊥0

B2
0

. (68)

Using this expression and performing the corresponding integral
with respect to τ in Eq. (65) we eventually obtain the following
rather simple dependence for the perturbed density

δn(x, t) = n0
ωcp

(Cs 2k0)2

ω2
0

ωcp − ω0

B2
⊥0

B2
0

(

cos (2k0Cs t) − 1
)

cos(2k0 x).

(69)

This equation indicates that the characteristic wavenumber of the
induced perturbations is 2k0 and the corresponding frequency
of the ion-acoustic driven wave is 2k0Cs and it is independent
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Fig. 7. Modulus of the velocity term, vLR, for left and right-handed
waves. For the R−mode the amplitude of vLR is typically bounded with
values around one, while for the L−mode it grows with the wavenum-
ber. Again in the limit of very small numbers the wave frequencies of
the single and multi-fluid descriptions coincide. In this plot we have
used βe = 6 × 10−2 and βp = 10−2.

of the frequency of the driver, ω0. We can simplify further this
expression using the dispersion relation given by Eq. (47) in the
multiplicative factor, obtaining

δn(x, t) = n0

v2
Ap

4C2
s

B2
⊥0

B2
0

(

cos (2k0Cs t) − 1
)

cos(2k0 x). (70)

Solving the wave equation for the velocity, using Eq. (59) and
Eq. (70) it is straight-forward to find

δux(x, t) =
v2

Ap

4Cs

B2
⊥0

B2
0

sin (2k0Cs t) sin(2k0 x). (71)

The previous expressions indicate a quadratic dependence of the
density and velocity fluctuation with the perturbed perpendicular
magnetic field. But recall that for a given perpendicular magnetic
fluctuation associated to the Alfvénic wave the velocity ampli-
tude for left and right-handed modes is different according to,
for example, Eq. (50).

It is worth mentioning that the previous result is for circu-
larly polarised waves. For linearly polarised Alfvén waves an
analytical solution is also available and it is different from the
one obtained here, as expected. It has been derived using the
D’Alembert’s method (see Rankin et al. 1994; Tikhonchuk et al.
1995; Ballester et al. 2020). In this last case the parallel veloc-
ity is the sum of two sinusoidal terms with angular frequencies
2k0cs and 2ω0. Considering the low β regime, cs k0 ≪ ω0, then
the dominant angular frequency of the solution is also 2k0cs.

It is useful to calculate an expression for the perturbed lon-
gitudinal electric field using Eq. (56) once we know the solution
for the density perturbation, δn(x, t). We find that

δEx(x, t) = − 1

c

B2
⊥0

B0

1

2

(

ω0

k0
+

c2
se

C2
s

k0

ωcp
v2

Ap

)

sin(2k0x)

+
1

c

B2
⊥0

B0

1

2

c2
se

C2
s

k0

ωcp
v2

Ap cos (2k0Cs t) sin(2k0 x). (72)

Hence, the parallel electric field has a time independent contri-
bution (first term) plus another term that accounts for the ion-
acoustic oscillation with time. At t = 0 the previous expression
leads to

δEx(x, t = 0) = −
1

c

B2
⊥0

B0

1

2

ω0

k0
sin(2k0x). (73)

which is independent of the sound speeds and it only depends
on the parameters of the Alfvén wave. At later stages of the evo-
lution the generation of density fluctuations modifies the initial
parallel electric field according to Eq. (72). But let us assume that
there is a mechanism that attenuates the ion acoustic oscillation,
for example LD. If this is the case this type of oscillations will
decay with time and its amplitude will tend to zero for t → ∞
but the Alfvénic wave will continue oscillating. We can use the
previous expressions to find the “static state” of the system. It is
clear that if the ion-acoustic oscillation is attenuated with time
then according to Eq. (71) it will eventually lead to δux(x, t) = 0.
But density is no longer uniform in the asymptotic state and us-
ing Eq. (70) it is found that

δn(x, t→ ∞) = −n0

v2
Ap

4C2
s

B2
⊥0

B2
0

cos(2k0 x). (74)

The parallel electric field in this limit accounts only for the first
term in Eq. (72)

δEx(x, t→ ∞) = −
1

c

B2
⊥0

B0

1

2

(

ω0

k0
+

c2
se

C2
s

k0

ωcp
v2

Ap

)

sin (2k0x)

= −
1

c

B2
⊥0

B0

1

2
δvLR sin (2k0x) . (75)

This means that there is a net parallel electric field in the system
created by the Alfvénic pump that is able to sustain the created
density cavities. These expressions provide information on how
the background has changed once the induced ion-acoustic os-
cillations have disappeared due to some damping mechanism,
for example LD. We have defined the velocity δvLR as the term
inside the parenthesis and this velocity is different for left and
right-handed modes. In Fig. 7 we see the dependence of δvLR

with the wavenumber for certain choice of values of plasma-
β for electrons and protons. We conclude that the left-handed
mode shows larger parallel electric field fluctuations (because
vLR is larger) than right-handed modes. The reason is that if ω0

is positive for left-handed waves, but negative for right-handed
waves then the addition of the two terms in the definition of vLR

(the second term is always positive) leading always to a larger
value for the L−mode.

Hence, we have solved analytically the problem of the non-
linear excitation of the ion-acoustic due to standing circularly
polarised Alfvénic pump in the absence of LD. Collisionless ion
damping is addressed in a similar manner as we have done in
Sect. 3.1. The details of the formal derivation are found in Ap-
pendix D. The main result is that we can reproduce exactly the
same procedure to introduce a kinetic effect in the multi-fluid
systems via the polytropic relation between the pressure to sec-
ond order and the density to second order. In other words, it is
justified to substitute again the sound speed by its complex ver-
sion that includes the effects of Landau damping.

Let us apply the results of the second order analysis to the
standing case. Since we have seen that the pump simply excites
the first harmonic with wavenumber 2k0 of all the possible ion-
acoustic eigenmodes, intuitively we expect that the frequency
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and damping times are precisely those found in Sect. 3.1 for 2k0.
But let us try to justify this result by assuming that ω is complex
and substituting the polytropic γp for the corresponding complex
expression involving the Z function. According to the analytical
results in the absence of LD, we can assume that the velocity is
of the form

δux = Ai e−iωt sin(2k0x), (76)

whereω can be now a complex number and A is a constant. From
the continuity equation, given by Eq. (59) and using Eq. (76) we
integrate with respect to time obtaining that

δn = n0Ai 2k0 cos(2k0x)
1

iω

(

e−iωt − 1
)

. (77)

This expression is very similar to Eq. (70) but we have not de-
termined the value of ω yet. To derive a dispersion relation we
have to use the wave equation for the density given by Eq. (61)
that includes the forcing term. But if we want to include the LD
effects we have already shown that we have to use the complex
version of Cs (complex γp), defined in Eq. (18). From the density
wave equation we find, after cancelling factors that contain the
spatial dependence, the following simple equation

1

iω
2k0 Ai (−iω)2e−iωt + C2

s

1

iω
(2k0)3 Ai

(

e−iωt − 1
)

= −k2
0v2

Ap

B2
⊥0

B2
0

.

(78)

This equation has two oscillatory terms proportional to e−iωt and
two non-oscillatory terms. To make the sum of the two oscilla-
tory terms zero, because the equation must be valid for any time,
we find the following condition must be satisfied,

ω = 2k0 Cs, (79)

where Cs depends on ω now and contains the Z function. This
equation is precisely the dispersion relation for ion-acoustic
waves that undergo LD. The corresponding wavenumber is twice
that of the Alfvénic driver.

In addition, the non-oscillatory term with time on the left
hand-side of Eq. (78) must be equal to the term on the right hand-
side, meaning that

A =
v2

Ap

4 Cs

B2
⊥0

B2
0

, (80)

where we have used Eq. (79) to eliminate ω from the equation.
Since we are working with complex numbers we have to take the
real part of Eqs. (76) and (77). If we assume that Cs is real (and
therefore independent of ω) we recover the results of Sect. 4.2,
compare with the amplitude in Eq. (71).

The main conclusion is that we obtain exactly the same
dispersion relation as in Sect. 3.1 for non-driven ion-acoustic
waves. In the driven case we simply have to change k by 2k0 and
solve the dispersion relation or use the analytical expressions for
the real and imaginary parts of the frequency already derived.
The Alfvénic pump, at second order in ǫ, does not modify the
attenuation by Landau damping of the generated ion-acoustic
waves. The reason is that the forcing term on the right-hand
side of Eq. (78) does not contain any dependence with the sound
speed, Cs, that accounts for LD effects.

Fig. 8. Top panel, macroscopic variables calculated from the hybrid
simulations at t = 36.3τA. We have used βe = 6 × 10−2 and βp = 10−3

and k0 = 2π/L. Bottom panel, same as the previous panel but at a later
stage, t = 80τA . The thick orange lines correspond to the analytical
predictions for the parallel electric field, velocity (essentially JX) and
density given by Eqs. (72), (70) and (71), the match with the numeri-
cal results is quite significant. The temporal evolution is available as an
online movie.

4.3. Hybrid simulations results for the Alfvénic pump driver

As in Sect. 3.2 we have performed hybrid simulations to have
further confirmation of the previous analytical results based on
the previous linear analysis. An example of a typical run is
shown in Fig. 8. The choice of the ratio between the electron
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and proton temperatures makes the LD mechanism inefficient in
this case and therefore suitable to be compared with the obtained
analytical results. We chose to excite the system with a right-
handed circularly polarised Alfvén wave with a wavelength that
matches the size of our spatial domain (therefore periodic bound-
ary conditions are applicable), i.e. k0 = 2π/L. In order to excite
this type of wave we need to impose a certain profile for the ve-
locity and magnetic field components at t = 0, the details are pro-
vided in Appendix C, in particular we have to use the excitation
given by Eqs. (C.13)-(C.16). In the hybrid simulation the particle
distribution function is initiated self-consistently with the bulk
velocity of the pump driver. The velocity and the magnetic field
perturbations are related (see Eq. (42)) through the fluid disper-
sion relation for the particular Alfvén driver pump wave (given
by Eq. (47)). There is no initial fluid speed in the parallel direc-
tion and no initial density perturbation either (since the Alfvénic
wave is incompressible). In our case the initial distribution con-
tains a delta function with drifts representing the transverse part
and multiplying a Gaussian function with no longitudinal drift
so that

f = δ(v⊥ − u⊥0) e−(vx−ux0)2/w0
2

(81)

with ux0 = 0, see also Eqs. (A.3) and (A.4). This initial excitation
is compatible, for example, with that of Sonnerup & Su (1967).

The simulation shows that we have excited the right-handed
wave since its frequency agrees with the expected value, given
by Eq. (49). We clearly find the driven ion-acoustic wave that
is nonlinearly excited in the system and we are also able to re-
produce its behaviour using the previous analytical results. For
example, the density shows periodic spatial changes (cavities)
with a wavenumber which is twice that of the Alfvénic driver
(2k0). We have overplotted the analytical profiles for the paral-
lel velocity and density fluctuation (Eqs. (70) and (71)) in Fig. 8
(see thick orange dashed lines) and we notice that the agreement
with the simulation results is quite remarkable. In addition, the
parallel electric field matches well with the formula given by
Eq. (72). Similar results are obtained if instead of exciting the
right-handed wave we perturb the system with a left-handed po-
larised wave, see Eqs. (C.29)-(C.32).

We now analyse how the driver affects the Landau damping
of the excited wave. For comparison purposes we consider the
same parameters in Sect. 3.2 where we studied the behaviour
of an initially excited ion-acoustic wave. In the present simula-
tions we find that the induced ion-acoustic shows an exponential
damping in a similar way as it was found in Fig. 2. Nevertheless,
we find some dependence of the attenuation on the amplitude of
the Alfvénic pump and therefore on the amplitude of the ion-
acoustic wave generated non-linearly. We already found this ef-
fect in the undriven case (see Sect. 3.2). We have performed sev-
eral simulations by changing the initial amplitude of the Alfvénic
pump and have constructed Fig. 9. We find that the smaller the
amplitude of the pump the weaker the attenuation by LD. Only
when the initial velocity amplitude is around 0.1vA the damp-
ing per period approaches the theoretical result of the non-driven
ion-acoustic attenuated wave. However, we have to be cautious
about this value of the pump since as we keep increasing its value
more energy goes into the ion-acoustic wave (with an amplitude
that is approximately given by Eq. (80)) which can eventually
start developing shocks, as we found in Sect. 3.2. In any case
the agreement of the real part of omega with the expected value
from the theoretical prediction is a clear indication that the Lan-
dau damping is taking place and that the process of attenuation if
not significantly altered in the driven case. This agrees with the
analytical justification that we have given in Sect. 4.2.

Fig. 9. Real and imaginary parts of ω for a standing ion-acoustic wave
derived from hybrid simulations as a function of the amplitude of the
Alfvénic pump. For the top curve, βe = 6 × 10−2 and βp = 10−2 while
for the bottom curve, βe = 10−1 and βp = 1.25× 10−2. In this simulation
k0 = 2π/L. The attenuation is calculated from the Fourier analysis in
space and the power of the mode m′ = 2 (or m = 4). The horizontal
dashed line corresponds to the expected real and imaginary frequency
of the corresponding non-driven ion-acoustic mode attenuated by LD
and calculated from the numerical solution of Eq. (19).

Finally, we investigate the generation of the parallel electric
field in the simulations. We calculate the Fourier power asso-
ciated to the m′ = 2 mode (k = 2k0), which is the dominant
wavenumber in the parallel electric field. The results from the
hybrid calculations are shown in Fig. 10. We find that the elec-
tric field starts at a certain value but then decreases and oscillates
around a new value with the frequency of the driven ion-acoustic
wave. This oscillation shows attenuation due to the LD process.
The initial value of the parallel electric field agrees with the cal-
culation given by Eq. (73) valid a at t = 0 (see dotted line). The
asymptotic value matches also with the theoretical prediction for
the stationary state given by Eq. (75) (see dashed line). This cor-
roborates the validity of our theoretical analysis.

Finally, from the hybrid simulations we have investigated
the possible presence of parametric instabilities. For most of the
cases investigated in the present paper we have not found clear
evidences of the presence parametric unstable modes. Only in
some specific situations with very small LD damping and very
long simulation times the effects of parametric instabilities can
be identified. This confirms that the role of parametric instabil-
ities is rather secondary in the present standing problem, as it
has been demonstrated in the analysis given at the beginning of
Sect. 4.
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Fig. 10. Parallel electric field amplitude associated to the mode m′ = 2
and calculated from the hybrid simulations. The dotted line corresponds
to the theoretical initial amplitude given by Eq. (73) while the dashed
line is the analytical estimation of the stationary value given by Eq. (75).
The match with the numerical results is quite significant. In this simu-
lation we have used βe = 6 × 10−2 and βp = 10−2 and the excitation
corresponds to a R−mode.

5. Application of the results

We briefly describe a possible application of the results dis-
cussed so far. Slow modes, closely related to ion-acoustic modes,
are often reported in the solar corona. In particular, observa-
tions indicate that standing waves slow modes are commonly
excited in coronal loops (see the review of Wang et al. 2021).
These modes are identified by Doppler and intensity fluctua-
tions in hot coronal lines. A possible mechanism that can ex-
plain the presence of these modes, at least the first harmonic, is
precisely a transverse Alfvénic oscillation that eventually drives
nonlinearly ion-acoustic waves. One of the most interesting fea-
tures of the reported oscillations is that they are heavily damped
with time, being the damping per period, τD/P, of the order
of one, meaning a severe attenuation. Several mechanism, in-
cluding non-adiabatic effects such as thermal conduction, com-
pressive viscosity, and optically thin radiation have been pro-
posed. Also nonlinearity, the cooling loop background, the wave-
caused heating/cooling imbalance, plasma non-uniformities, and
other effects such as loop geometry, wave leakage through foot-
points and in corona and magnetic effects (mode coupling and
obliqueness) have been used to try to explain the fast attenua-
tion. Voitenko et al. (2005) concluded that the observed dissipa-
tion distances for propagating slow modes can alternatively be
explained by phase mixing in its ideal regime, where the appar-
ent damping is due to the spatial integration of the phase mixed
amplitudes by the observation.

The measurements of the difference in electron and ion tem-
perature in the solar corona indicate in some cases that Te ≈
Tp/3.5 (e.g. Boldyrev et al. 2020). This value suggests that ion-
acoustic waves suffer strong LD under coronal conditions and
therefore this wave-particle interaction mechanism may explain,
for example, the reported attenuation of standing slow modes in
coronal loops. The damping per period due to Landau damping
is essentially independent of the wavenumber, see Eqs. (20) and
(21), meaning that, although we have focused in the present work
on very small spatial scales, in reality the mechanism operates
on much larger spatial scales as well. Similar results concerning
kinetic damping of small scale slow-wave modes and higher fre-
quency waves were obtained by Viñas et al. (2000) with regards
to coronal heating and the formation of suprathermal tails in the

coronal plasma. Therefore, we propose here that the attenuation
of standing slow modes reported in the solar corona might be
linked to the process of LD. The expression for the damping per
period using Eqs. (20) and (21) is

τD/P =

√
2

π3/2
e

1
2 (ψ+3) 1

ψ

1
√

ψ + 3
, (82)

where

ψ = γe
βe

βp
. (83)

This expression is only applicable in the situation βp ≤ βe, i.e.,
for weak attenuation. Equation (82) can be used in the future
for seismological purposes. In particular, it might be possible of
infer the ratio βe/βp based on the reported characteristics of the
damped ion-acoustic modes.

The effect of LD has been investigated, in the coronal con-
text, for propagating waves, see Ruan et al. (2016a,b). These
authors performed simulations of driven slow modes along the
magnetic field by using a kinetic model that includes the effects
of Landau damping and Coulomb collisions. They found that the
obtained spatial scale of damping is similar to that resulting from
thermal conduction in MHD. Future studies should address the
case of the standing wave problem studied here, but including
the effect of collisions which are not negligible in the lower so-
lar corona and might have a significant effect on the attenuation
by LD.

6. Conclusions and discussion

Two cases of the evolution of ion-acoustic waves have been in-
vestigated. We have first studied the excitation of purely ion-
acoustic standing modes using a multi-fluid approach. We have
solved analytically the initial and boundary value problem in-
corporating kinetic effects by using a complex polytropic index.
We have shown that ion-acoustic standing waves attenuate by
Landau damping, a result that is completely equivalent to the
Landau attenuation for propagating ion-acoustic waves, exten-
sively explored in the literature. The performed numerical hybrid
simulations have shown however that the attenuation follows the
predictions of the LD up to a certain degree. Too large or too
small initial excitation amplitudes do not lead to the expected
damping times due to the effects of nonlinearity and/or noise. In
general we find that for the standing case, two symmetric beams
develop in the distribution function since the standing wave can
be viewed as the superposition of the two counter-propagating
waves.

The presence of two symmetric counter-streaming beams
in the distribution function can have important consequences
regarding the stability of the system. For example, it is well
known in plasma physics, that counter-streaming beams can be
the source of the oscillating two-stream instability that strongly
affects the stability of such distributions and becomes the source
for additional wave mode excitation. In the future, this aspect
should be investigated in detail since two stream instabilities
may develop and affect the dynamics of the configuration. In
essence when two streams move through each other one wave-
length in one cycle of the plasma frequency, a density perturba-
tion on one stream is reinforced by the forces due to bunching of
particles in the other stream and vice versa (e.g. Dawson 1962;
Birdsall & Langdon 1991).

The second aspect investigated in this paper considers the
case when the Alfvénic pump is present, driving the ion-acoustic
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waves. For this case we have shown that standing circularly
polarised waves have the same dispersion relation as propa-
gating waves and we have derived the appropriate polarisation
conditions for their excitation. We further have demonstrated
that, parametric instabilities are secondary in the standing prob-
lem, contrary to the situation studied by Chian & Oliveira (1994,
1996); Oliveira & Chian (1996), and to the purely propagating
case. The Alfvénic pump excites nonlinearly, via ponderomotive
forces, the second harmonic of the standing ion-acoustic wave,
i.e., with k = 2k0, where k0 is the wavenumber of the standing
pump. The frequency of the ion-acoustic wave is ω = 2k0Cs,
in the absence of Landau attenuation. When Landau damping
is relevant it also affects the real part of the frequency. These
ion-acoustic waves are damped with time depending on the ratio
Te/Tp. The hybrid simulations have shown that the attenuation
follows the standard linear predictions in the non-driven case up
to a certain degree. The attenuation is weaker when the ampli-
tude of the driver is low.

We have derived analytical expressions for the density and
electric fluctuations induced quadratically by the pump. Left and
right-handed modes produce exactly the same density fluctua-
tions but we have demonstrated that the L−mode has the largest
parallel electric field fluctuation. These results provide a possi-
ble interpretation of measurements of electric fields parallel to
the magnetic field observed, for example, in the auroral iono-
sphere. Although several mechanisms can explain this reported
electric field, Israelevich & Ofman (2004, 2011) have proposed
that precisely standing Alfvén waves can naturally generate the
parallel electric field. The analytic expressions for the generated
electric fields could be used in the future to compare with the ob-
servations, although the first impression is that this electric field
is rather small in general. On a different context, Mottez (2015)
has investigated the generation of electric fields due to the inter-
action of counter propagating Alfvén waves. Nevertheless, the
generated electric field in our case is purely due to the pondero-
motive forces, while the electric field described by the previous
author has a completely different origin.

We have proposed that standing slow modes reported in
coronal loops can be interpreted in terms of ion-acoustic waves
that attenuate by Landau damping. The ratio Te/Tp plays the
relevant role in this problem, and may be it can be indirectly
inferred from the damping per period of slow modes reported
from the observations. However, the low corona is known to be
weakly collisional and this can be a competing effect that can
have a significant influence on the process of LD. The efficiency
of the attenuation is altered by the thermalisation of the non-
thermal tail in the velocity distribution by Coulomb collisions.
In the propagating case, beam flows are produced by Landau
resonance but they are destroyed by Coulomb friction. From the
theoretical point of view the inclusion of collisional effects is
through the Vlasov equation by including a Fokker-Planck col-
lisional term, although there are other alternatives. This problem
should be investigated in the near future with potential applica-
tions to partially ionised plasmas also.

The reasons to neglect electron Landau damping are that
the focus of this paper is to study low frequency waves (i.e.
waves below the ion-cyclotron and ion-plasma frequencies) for
which electron Landau damping has little or no-contribution
since this effect is more important for high frequency waves (i.e.
like whistler, electron-acoustic, and Langmuir waves). Further-
more, because the ion and electron temperatures are similar, the
electron thermal velocity (i.e. the width) of the electron veloc-
ity distribution function is about 43 times larger than the ion
thermal velocity. This indicates that the electron LD is much

smaller than that of ion-Landau damping for resonances near
the ion-thermal speed since LD is proportional to the slope of
the velocity distribution function. Only ion-Landau damping is
included in this work. Also, the use of the hybrid simulation ne-
glects by construction electron LD since electrons are treated
as fluid. Additionally, there are various reasons to consider only
zero ion perpendicular temperature in our study. This is due to
the fact that a finite ion-perpendicular temperature has no effect
on Landau damping and only contributes to ion-cyclotron damp-
ing when finite ion-gyroradius effects are included. In principle,
finite perpendicular temperature effects can be included, how-
ever the mathematical calculations become more tediously com-
plex since in this case one needs to introduce not only a sin-
gle cyclotron frequency but also an infinite series of cyclotron-
harmonic that will require a truncation. And more important the
effect of finite perpendicular temperature will not contribute to
LD at all, only to cyclotron damping. Since in our study we
are only considering parallel propagation, this fact further elim-
inates the effect of finite ion-perpendicular temperatures. The
hybrid simulations do include finite-temperature effects such as
cyclotron-damping but notice that they do not change the Landau
damping which is a longitudinal effect.

The results presented here will be used to consider more re-
alistic situations. In particular, it is interesting to introduce dif-
ferent ion populations to study their effects. For example, two
counter-propagating light beams together with a heavy station-
ary population. This could represent a loop with weak flows pen-
etrating thought the footpoints. The stability of this system can
be then analysed using kinetic theory with both analytical meth-
ods and hybrid simulations. Interestingly, different types of insta-
bilities can appear in the system. Along the same line, we have
focused on initial excitations that correspond to pure standing
waves, meaning that the two counter propagating waves have
exactly the same amplitude and wavelength but propagating in
opposite directions. It would be interesting to analyse the effect
of two slightly unbalanced counter propagating waves, i.e. when
the symmetry is broken. This can significantly change the dy-
namics of the system, lead to the appearance of more clear beams
and possibly to the development of stronger parametric instabil-
ities, which are weak in the perfectly symmetric case.
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Appendix A: Incorporating kinetic effects in the

fluid description

The method was presented Araneda (1998); Araneda et al.
(2007) for propagating waves but here we extend it to the case
of standing waves. Kinetic effects in the fluid equations emerge
through the Vlasov equation,

∂Fs(x, v, t)

∂t
+ v · ∇Fs(x, v, t)

+
qs

ms

(

E(x, t) +
v × B(x, t)

c

)

∂Fs(x, v, t)

∂v
= 0,

(A.1)

where Fs(x, v, t) represents the distribution function of species
s and v is the velocity vector that corresponds to the particle
distribution velocities. Do not confuse this velocity with the fluid
velocity, u, introduced in the main text.

We linearise Eq. (A.1) with

Fs(x, v, t) = F0s(x, v, t) + δ fs(x, v, t), (A.2)

F0s(x, v, t) = δ (v⊥ − u⊥0s(x, t)) f0s(vx), (A.3)

where we have assumed that the fluctuation of the velocity distri-
bution function is δ fs(x, vx, t). In Eq. (A.3) we have assumed that
the perpendicular temperature in the zeroth order is zero as rep-
resented by the Dirac delta-function in the transverse velocity di-
rection which includes only the effect of the transverse wave ve-
locity drift. The zeroth order parallel velocity distribution f0s(vx)
can be taken, with all generality, as a finite temperature drifting
Maxwellian distribution given by

f0s(vx) =
n0s√
πw0s

e
− (vx−ux0s )2

w2
0s , (A.4)

where n0s is the equilibrium ion density and w0s =
√

2κBT0s/ms

is the thermal velocity and ux0s is the velocity drift. The first-
order linearised expression for δ fs(x, vx, t) can be immediately
determined as

∂δ fs(x, vx, t)

∂t
+ vx

∂δ fs(x, vx, t)

∂x
+

qs

ms

(

δEx(x, t)+

δuysBz − δuzsBy + uysδBz − uzsδBy

c

)∂ f0s(vx)

∂vx

= 0.

(A.5)

We assume that the fluctuations vary as ei(kx−ωt) with a complex
frequencyω and a real wave vector k. We are therefore consider-
ing propagating waves for the moment, but as mentioned earlier
the goal is to find a solution for standing waves. Following this
linearising procedure in Eq. (A.5) yields to

δ fs(x, vx, t) = −i
qs

ms

δGs(x, t)
1

ω − kvx

∂ f0s(vx)

∂vx

, (A.6)

where we have defined

δGs(x, t) = δEx +
δuysBz − δuzsBy + uysδBz − uzsδBy

c
, (A.7)

that represents a longitudinal force, and it is dependent in (x, t)
but independent of the particle velocities. At this point is un-
necessary to know the exact form of this force, thus we will fo-
cus on the resonant wave-particle interaction term in Eq. (A.6).

Note that for purely ion-acoustic waves propagating with par-
allel propagation, the magnetic terms are zero in Eq. (A.7) and
only the x−component of the electric field survives.

We now calculate the moment density fluctuation δns of
the plasma from the linearised velocity distribution fluctuation
δ fs(x, vx, t) as:

δns(x, t) =

∫ +∞

−∞
δ fs(x, vx, t) dvx. (A.8)

By substitution of Eq. (A.4) and Eq. (A.6) into Eq. (A.8) and per-
forming the integrals (see the details in Appendix B) we obtain

δns(x, t) = in0s

qs

ms

δGs(x, t)

kw2
0s

Z′(ξs), (A.9)

which is written in terms of the derivative of the Zeta function,
Z and ξs =

ω−kux0s

k w0s
. We now associate the density fluctuation de-

rived in Eq. (A.9) to the pressure fluctuation via the usual poly-
trope equation

δps

p0s

= γ
δns

n0s

, (A.10)

where γ is the polytrope coefficient that is not constant anymore,
but depends on the complex frequency, the wave vector and the
background equilibrium parameters of the plasma. To obtain the
proper representation of the polytrope γ we need to use the lin-
earised continuity equation and the linearised longitudinal fluid
momentum equation for species s given by:

∂δns

∂t
+
∂(δnsu0xs + n0sδuxs)

∂x
= 0, (A.11)

∂δuxs

∂t
+u0xs

∂δuxs

∂x
=

qs

ms

(

δEx +
δuysBz − δuzsBy + uysδBz − uzsδBy

c

)

− 1

msn0s

∂δps

∂x
. (A.12)

Upon linearisation of Eq. (A.11) and Eq. (A.12) we obtain

(ω − k u0xs) δns = kn0s δuxs, (A.13)

−i(ω − k u0xs) δuxs =
qs

ms

δGs(x, t) − i
kδps

msn0s

. (A.14)

From Eq. (A.13) we get an expression for δuxs which is sub-
stituted in Eq. (A.14). Combined with Eq. (A.9) it leads to the
complex kinetic polytropic relationship

δps

p0s

= 2

(

ξ2
s −

1

Z′(ξs)

)

δns

n0s

. (A.15)

where Z′ is the derivative of the plasma dispersion function. We
have also used that p0s = n0skBT0s.

Therefore, comparing Eq. (A.10) with Eq. (A.15) we recog-
nise the complex kinetic polytrope coefficient as

γ = 2

(

ξ2
s −

1

Z′(ξs)

)

. (A.16)

Equations (A.15) and (A.16) clearly show that density and pres-
sure fluctuations are not necessarily in phase in contrast with the
phase-locking that results from the constant value obtained in
the fluid treatment. This result indicates that the kinetic poly-
tropic coefficient depends on the dispersive properties of the
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plasma. Since this coefficient is in the Fourier-domain, its in-
verse transform (e.g., via a superposition of the wave modes
that corresponds to multiple spatial scales of the system) of
Eq. (A.16) implies an intricate nonlocal real-space relationship
between pressure and density of the system. On the contrary,
in the fluid treatment the polytrope is assumed to be constant
and the pressure and density relationship is local. Therefore, the
dispersive property of the polytrope coefficient introduces non-
local effects which ultimate control the transfer of energy be-
tween finite amplitude transverse and longitudinal fluctuations
(Mjolhus & Wyller 1988; Spangler 1989; Hammett & Perkins
1990). As a result, this can explain to certain extent, why it
is difficult to obtain reasonable values of the polytropic coeffi-
cient when comparing linear fluid theory with kinetic simula-
tions (Vasquez 1995). We should emphasised, however, that we
have included kinetics effects only in the parallel direction, but
we kept the assumption for drifting Maxwellian distributions.
This means that we keep only the collisionless damping effects
of Landau damping on the growth rates of ion-acoustic wave, but
all other kinetic cyclotron resonance effects (due to the simpli-
fied zeroth transverse temperature effects and finite gyro-radius
effects) are completely neglected.

Let us now repeat the same analysis but for a propagating
wave in the opposite direction, i.e., now the wave propagates to
the left, meaning that we are assuming that the wavenumber is
−k. Following the same procedure we now have that the fluctua-
tion in the perturbed distribution function is simply,

δ fs(x, vx, t) = −i
qs

ms

δGs(x, t)
1

ω + kvx

∂ f0s(vx)

∂vx

, (A.17)

but note the change in the denominator with respect the equiva-
lent equation for the right propagating wave in Eq. (A.6).

Calculating the density fluctuation δns of the plasma from the
linearised velocity distribution fluctuation δ fs(x, vx, t) as before
we obtain now

δns(x, t) = −in0s

qs

ms

δGs(x, t)

kw2
0s

Z′(ξs). (A.18)

where we use the definition for ξs as in the previous case (ξs =
ω

kw0s
, where for simplicity we have eliminated the drift). Details

about this derivation are found in Appendix B. Note the change
in the global sign in comparison with the result for the wave
propagating to the right, Eq. (A.9). The calculation of the com-
plex kinetic polytropic relationship leads now to

δps

p0s

= 2

(

ξ2
s −

1

Z′(ξs)

)

δns

n0s

, (A.19)

and therefore the complex kinetic polytrope coefficient is

γ = 2

(

ξ2
s −

1

Z′(ξs)

)

. (A.20)

It is clear that from the physical point of view it should lead
to exactly the same damping times as for the right propagating
wave when there is no Alfvénic pump. And this agrees with the
value of γ that we have obtained, it is exactly the same as in
Eq. (A.16) for the wave propagating to the right.

These results are for propagating waves but we are interested
on standing waves. The previous derivation leads us to think
that in fact the full standing solution for the distribution func-
tion should be of the form

δ fs(x, vx, t) = f+(vx) ei(kx−ωt) + f−(vx) ei(−kx−ωt), (A.21)

where f+(vx) and f−(vx) are not equal, according to what we have
shown before. Introducing this fluctuation in the Vlasov equation
now we obtain the following

−iωe−iωt
(

f+eikx + f−e−ikx
)

+ vxike−iωt
(

f+eikx − f−e−ikx
)

+
qs

ms

δG(x, t)
∂ f0s(vx)

∂vx

= 0. (A.22)

To have a proper solution, δG(x, t) must be of the form

δG(x, t) = e−iωt
(

G+eikx +G−e−ikx
)

, (A.23)

in this case the temporal phases cancel and to have a solution
the spatial phases are balanced in Eq. (A.22) if the following
conditions are satisfied

f+ = −i
qs

ms

G+
1

ω − kvx

∂ f0s(vx)

∂vx

,

f− = −i
qs

ms

G−
1

ω + kvx

∂ f0s(vx)

∂vx

. (A.24)

These expressions provide the fluctuation associated to each
travelling wave and are in agreement with Eqs. (A.6) and (A.17)
when we performed the calculations for each propagating wave
independently. Hereafter we assume that k is always positive.
Now we can calculate the density fluctuation associated to the
total distribution function based on Eq. (A.21) by performing
the integration in velocities. The result is

δns(x, t) = in0s

qs

ms

G+

kw2
0s

Z′(ξs) e−iωteikx

− in0s

qs

ms

G−

kw2
0s

Z′(ξs) e−iωte−ikx. (A.25)

Interestingly, this expression simplifies the problem if G+ = −G−
since we obtain the simple form

δns(x, t) = in0s

qs

ms

G+

kw2
0s

Z′(ξs) e−iωt
(

eikx + e−ikx
)

. (A.26)

where we clearly have the superposition of the right and left
propagating wave with the same amplitude. If we chose, that
G+ = G− we simply have

δns(x, t) = in0s

qs

ms

G+

kw2
0s

Z′(ξs) e−iωt
(

eikx − e−ikx
)

. (A.27)

Note that the addition of exponentials in Eq. (A.26) reduces to a
cosinus while the subtraction in Eq. (A.27) leads to a sinus. This
is precisely the profile we obtained previously, see for example
Eq. (16).

Appendix B: Forward and backward propagating

waves

It is straight forward to get from Eq. (A.4) that

∂ f0s(vx)

∂vx

=
n0s√
πw0s

−2 (vx − ux0s)

w2
0s

e
− (vx−ux0s )2

w2
0s , (B.1)

therefore we have from Eq. (A.8) that for a wave propagating to
the right

δns(x, t) = i
qs

ms

δGs(x, t)
2 n0s√
πw3

0s

Is(ω, k), (B.2)
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where

Is(ω, k) =

∫ +∞

−∞

(vx − ux0s) e
− (vx−ux0s )2

w2
0s

ω − kvx

dvx, (B.3)

by setting λ = vx−ux0s

w0s
the integral Is(ω, k) becomes:

Is(ω, k) = −w0s

k

∫ +∞

−∞

λe−λ
2

λ − ξs

dλ, (B.4)

where ξs =
ω−kux0s

k w0s
which reduces to:

Is(ω, k) =

√
πw0s

2k
Z′(ξs), (B.5)

where we have defined Z′(ξs) = −2
(

1 + ξs Z(ξs)
)

expressed in
terms of the plasma dispersion function Z(ξs) (e.g. the Fried and
Conte function) defined as

Z(ξs) =
1
√
π

∫ +∞

−∞

e−λ
2

λ − ξs

dλ. (B.6)

Finally, substituting Eq. (B.5) into Eq. (B.2) we obtain Eq. (A.9).
The integral form of the Zeta function is in principle only appli-
cable when Im(ξs) > 0.

For the left propagating wave with wavenumber −k, we have

Is(ω,−k) =

∫ +∞

−∞

vx e
− (vx )2

w2
0s

ω + kvx

dvx, (B.7)

by setting λ = − vx

w0s
the integral now becomes:

Is(ω,−k) =
w0s

k

∫ −∞

+∞

λe−λ
2

ξs − λ
dλ = −w0s

k

∫ +∞

−∞

λe−λ
2

ξs − λ
dλ =

w0s

k

∫ +∞

−∞

λe−λ
2

λ − ξs

dλ (B.8)

where ξs =
ω

kw0s
, and the integral reduces to:

Is(ω,−k) = −
√
πw0s

2k
Z′(ξs). (B.9)

This expression is valid if Im(ξs) > 0. Note the difference in
the sign between Eq. (B.9) (left propagating wave) and Eq. (B.5)
(right propagating wave). The previous analysis takes into ac-
count the effect of the sign of k in the dispersion relation, in
agreement with the definition given in Podesta & Gary (2011)
(see their Eq. (26)).

Appendix C: The standing Alfvén wave solution

Let us construct a standing Alfvénic wave solution using the re-
sults for circularly propagating waves. The idea is to superim-
pose two waves with the same frequency and same wavenumber
but travelling in opposite directions. This is easily done in MHD
because of the degeneracy of Alfvén waves. In the multifluid
approach used in this work changing ω by −ω leads to another
solution of the dispersion relation. Nevertheless, the symmetry
regarding the wavenumber is still present, as we can see from
Eq. (48). Therefore, the propagation direction of the wave is
easily reversed changing the sign of k0. We consider first right

handed Alfvén waves. The perturbed velocities and magnetic
fields components are of the following form

uz = u0 cos (k0x − ω0t), (C.1)

Bz = −u0
B0

v2
A

ω0

k0
cos (k0x − ω0t), (C.2)

uy = u0 sin (k0x − ω0t), (C.3)

By = −u0
B0

v2
A

ω0

k0
sin (k0x − ω0t), (C.4)

where we have used Eq. (50) to use the proper amplitude and
sign of the magnetic field in terms of the initial velocity ampli-
tude u0. It is important to note that the amplitude of the perturbed

magnetic field, B⊥ =
√

B2
x + B2

y is a constant, independent of

space and time (the same is also true for the perpendicular ve-
locity).

The corresponding backward wave (we change k0 by −k0)
has the same frequency (see Eq. (48)) and (using again Eq. (50))
we have

uz = u0 cos (−k0x − ω0t), (C.5)

Bz = u0
B0

v2
A

ω0

k0
cos (−k0x − ω0t), (C.6)

uy = u0 sin (−k0x − ω0t), (C.7)

By = u0
B0

v2
A

ω0

k0
sin (−k0x − ω0t). (C.8)

Now we just need to make a linear combination of the two waves
to obtain the standing solution. We choose to subtract the for-
ward wave from the backward wave and using standard trigono-
metric formulas the result is written as

uz = u0 sin(ω0t) sin(k0x), (C.9)

Bz = −u0
B0

v2
A

ω0

k0
cos(ω0t) cos (k0x), (C.10)

uy = u0 cos(ω0t) sin (k0x), (C.11)

By = u0
B0

v2
A

ω0

k0
sin(ω0t) cos (k0x), (C.12)

where a common multiplicative constant has been eliminated.
It is evident from the previous expressions that, contrary to the
propagating case, B⊥ is not constant now. To properly excite a
standing right hand wave in the simulations at t = 0 we just need
to impose a perturbation of the following form

uz = 0, (C.13)

Bz = −u0
B0

v2
A

ω0

k0
cos (k0x), (C.14)

uy = u0 sin (k0x), (C.15)

By = 0. (C.16)

A similar approach is used to derive the expression for the
standing left handed polarised wave. Now the dispersion rela-
tion is given by Eq. (48) and Eq. (50) does not change. For the
forward wave we have

uz = −u0 cos (k0x − ω0t), (C.17)

Bz = u0
B0

v2
A

ω0

k0
cos (k0x − ω0t), (C.18)

uy = u0 sin (k0x − ω0t), (C.19)

By = −u0
B0

v2
A

ω0

k0
sin (k0x − ω0t), (C.20)
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while for the backward wave (k0 → −k0) we have

uz = −u0 cos (−k0x − ω0t), (C.21)

Bz = −u0
B0

v2
A

ω0

k0
cos (−k0x − ω0t), (C.22)

uy = u0 sin (−k0x − ω0t), (C.23)

By = u0
B0

v2
A

ω0

k0
sin (−k0x − ω0t). (C.24)

Combining the previous waves we obtain

uz = u0 sin(ω0t) sin(k0x), (C.25)

Bz = −u0
B0

v2
A

ω0

k0
cos(ω0t) cos (k0x), (C.26)

uy = −u0 cos(ω0t) sin (k0x), (C.27)

By = −u0
B0

v2
A

ω0

k0
sin(ω0t) cos (k0x). (C.28)

Hence, to excite a circularly left handed Alfvén wave at t = 0 we
have to impose the following initial perturbation

uz = 0, (C.29)

Bz = −u0
B0

v2
A

ω0

k0
cos (k0x), (C.30)

uy = −u0 sin (k0x), (C.31)

By = 0. (C.32)

Appendix D: Kinetic effects on ion acoustic waves

driven by Alfvén waves

We carry out a new regular perturbation method on the Vlasov
equation to introduce kinetic effects by implementing the
method described in Section 3.1. To begin the new analysis
scheme we first introduce the perturbation expansion of the
macroscopic fluid quantities:

u = ǫ u⊥ + ǫ
2 δux êx + ǫ

3 u′⊥,

B = B0 êx + ǫ B⊥ + ǫ
3 B′⊥,

E = ǫ E⊥ + ǫ
2δEx êx + ǫ

3 E′⊥,

n = n0 + ǫ
2 δn,

p = p0 + ǫ
2 δp. (D.1)

The analysis begins with the linearisation scheme of the velocity
distribution function

Fs(x, v, t) = F0s(v) + ǫ2 δFs(x, v, t). (D.2)

Note that the perturbation expansion of the velocity distribu-
tion does not contain a first-order terms in ǫ. This is because in
this order an incompressible transverse Alfvén wave is imposed,
which has no density perturbation associated with it. Further-
more, the zero-order expansion is chosen to be independent of
time and space in the following form

F0s(v) =
n0s√
πw0s

δ(v⊥ − u⊥0s) e
− (vx−ux0s )2

w2
0s . (D.3)

In these equations, again the velocity vector v corresponds to the
particle distribution velocities whereas u⊥0s corresponds to the
transverse Alfvén wave fluid velocity perturbation of the initial
wave (given in Appendix C).

Inserting the perturbation expansion in Eqs. (D.1) and (D.2)
into the Vlasov equation we obtain a hierarchy of equations at
different orders in the perturbation expansion of the distribution
function. At the zeroth order in ǫ the Vlasov equation is satisfied
exactly for the equilibrium state. To first order in ǫ, the Vlasov
equation is also satisfied since there is no first order velocity dis-
tribution in the expansion nor first order density perturbation. At
the second order in ǫ the Vlasov equation becomes

∂δFs(x, v, t)

∂t
+ v · ∇δFs(x, v, t)

+
qs

ms

(

E(x, t) +
v × B(x, t)

c

)(0)

x

· ∂δFs(x, v, t)

∂vx

+
qs

ms

(

E(x, t) +
v × B(x, t)

c

)(0)

⊥
· ∂δFs(x, v, t)

∂v⊥

+
qs

ms

(

E(x, t) +
v × B(x, t)

c

)(2)

x

· ∂F0s(x, v, t)

∂vx

+
qs

ms

(

E(x, t) +
v × B(x, t)

c

)(2)

⊥
·
∂F0s(x, v, t)

∂v⊥
= 0.

(D.4)

where the force terms have been separated into parallel (x) and
perpendicular (⊥) components relative to the mean magnetic
field direction and the superscripts in parenthesis (0) and (2) rep-
resent zeroth and second order force terms defined below. Thus,
to second order in ǫ the Vlasov equation reduces to

∂δFs(x, v, t)

∂t
+ v · ∇δFs(x, v, t)

= − qs

ms

(

δEx(x, t) +
(u⊥(x, t) × B⊥(x, t))x

c

)

· ∂F0s(v)

∂vx

.

(D.5)

At this point, in order to get a solution for the second order dis-
tribution δFs(x, v, t) we have to assume either a propagating or a
standing solution. Note that Eq. (D.5) is equivalent to Eq. (A.5)
indicating that we it will eventually lead to the definition of the
complex γ.
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